;;; Workflow tips: ;;; ;;; Currently, this is not yet fully self-hosting; it is based on ;;; flatassembler[1]. A minimal command to build and run it is: ;;; ;;; fasmg quine.asm quine && chmod 755 quine && ./quine; echo $? ;;; ;;; A workflow you may wish to use for debugging is: ;;; ;;; rm quine2; fasmg quine.asm quine && ./quine > quine2; echo "exit code:" $?; echo; hexdump -C quine; echo; hexdump -C quine2; echo; cmp quine quine2 ; echo cmp: $? ;;; ;;; The reason this removes the old one first is that otherwise, there's a ;;; risk the error message will be scrolled off the top of the screen and ;;; you'll see stale output and not realize. ;;; ;;; You may also wish to do: ;;; ;;; objdump --disassemble quine ;;; ZydisDisasm -64 quine ;;; ;;; This relies on GNU binutils, and on zydis, respectively. ;;; ;;; [1] https://flatassembler.net/ ;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Assembly language ;;; ;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Before doing any actual code, we define macros for writing x86-64 assembly ;;; language. This is built from scratch, relying only on flatassembler's ;;; built-in semantics. No include files of any kind are used for it. macro rex.0 db 0x40 end macro macro rex.w db 0x48 end macro macro rex.xb db 0x43 end macro macro modrm mod, reg, rm assert mod >= 0 & mod < 4 assert reg >= 0 & reg < 8 assert rm >= 0 & rm < 8 db (mod shl 6) or (reg shl 3) or rm end macro macro sib scale, index, base assert scale >= 0 & scale < 4 assert index >= 0 & index < 8 assert base >= 0 & index < 8 db (scale shl 6) or (index shl 3) or base end macro macro opcodereg opcode, reg assert opcode >= 0 & opcode < 256 & opcode and 7 = 0 assert reg >= 0 & reg < 8 db opcode or reg end macro macro qwordreg result, register match =rax?, register result = 0 else match =rcx?, regiser result = 1 else match =rdx?, register result = 2 else match =rbx?, register result = 3 else match =rsp?, register result = 4 else match =rbp?, register result = 5 else match =rsi?, register result = 6 else match =rdi?, register result = 7 else assert 0 end match end macro ; TODO what register size does this use? macro mov.b target, source match =rax?, target db 0xB8 dd source else match =rdi?, target db 0xBF dd source else assert 0 end match end macro ; TODO what register size does this use? macro mov.dreg.dimm target, source rex.w db 0xC7 qwordreg reg, target modrm 3, 0, reg dd source end macro macro mov.qreg.qimm target, source rex.w qwordreg treg, target opcodereg 0xB8, treg dq source end macro macro mov.qreg.qreg target, source qwordreg treg, target qwordreg sreg, source rex.w db 0x89 modrm 3, sreg, treg end macro ; TODO what register size does this use? macro add.b target, source match =rax, target rex.w db 0x83 modrm 3, 0, 0 db source else assert 0 end match end macro macro add.q target, source db 0x01 qwordreg treg, target qwordreg sreg, source modrm 3, sreg, treg end macro ; TODO what register size does this use? macro sub.b target, source match =rsp, target rex.w db 0x83 modrm 3, 5, 4 db source else assert 0 end match end macro ; Move from an 8-bit immediate value, to a location relative to a 64-bit ; register, with an 8-bit displacement and no indexing. ; ; This uses opcode 0xC6, which has w = 0. Since we run in 64-bit mode, that ; makes the operand size 8 bits, regardless of the current operand-size ; attribute. [Intel] volume 2D, section B.1.43, table B-6. macro mov.rel.b target, offset, source match =rsp, target db 0xC6 modrm 1, 0, 4 sib 0, 0, 4 db offset db source else assert 0 end match end macro ; Move from a 16-bit immediate value, to a location relative to a 64-bit ; register, with an 8-bit displacement and no indexing. ; ; This uses opcode 0xC7, which has w = 1. We run in 64-bit mode, so that gives ; us an operand size of 32 bits by default. [Intel] volume 1, section 3.6.1, ; table 3-4. We want a 16-bit operand, so we use the operand-size prefix, ; 0x66, and we leave REX.W unset. macro mov.rel.w target, offset, source match =rsp, target db 0x66 db 0xC7 modrm 1, 0, 4 sib 0, 4, 4 db offset dw source else assert 0 end match end macro ; Move from a 32-bit immediate value, to a location relative to a 64-bit ; register, with an 8-bit displacement and no indexing. ; ; This uses opcode 0x67, which has w = 1. We run in 64-bit mode, so that gives ; us an operand size of 32 by default. [Intel] volume 2D, section B.1.43, ; table B-6. This is what we want, so we leave it. macro mov.rel.d target, offset, source match =rsp, target db 0xC7 modrm 1, 0, 4 sib 0, 4, 4 db offset dd source else assert 0 end match end macro ; Move from a 64-bit register, to a 64-bit location relative to a 64-bit ; register, with an 8-bit displacement and no indexing. ; ; This uses opcode 0x89. macro mov.rel.q target, offset, source match =rsp, target qwordreg sreg, source rex.w db 0x89 modrm 1, sreg, 4 sib 0, 4, 4 db offset else assert 0 end match end macro ; Move from a 32-bit immediate value, to a 64-bit location relative to a ; 64-bit register, with an 8-bit displacement and no indexing. ; ; Note that there is no instruction to move a 64-bit immediate to memory. ; ; This uses opcode 0xC7, which has w = 1. We run in 64-bit mode, so that ; gives us an operand size of 32 by default. [Intel] volume 2D, ; section B.1.43, table B-6. We want a 64-bit operand, so we use the REX.W ; prefix, 0x48. macro mov.rel.q.d target, offset, source match =rsp, target rex.w db 0xC7 modrm 1, 0, 4 sib 0, 4, 4 db offset dd source else assert 0 end match end macro macro syscall db 0x0F, 0x05 ; 0f two-byte escape ; 05 syscall ^ o64 end macro ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Executable file format ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Before we get into the meat of the program, we do a lot of ELF-specific ;;; stuff to ensure that our output is in a format Linux knows how to run. ;;; ;;; First, we set the origin to load at. This is arbitrary, but it can't be ;;; zero. We tell flatassembler about it because it's used in label ;;; calculations; we can reference it as $$ any time we need it in future. org 0x08000000 ;;; ;;; Second, we output ELF's top-level file header. ;;; elf_header: ; * denotes mandatory fields according to breadbox db 0x7F, "ELF" ; *magic number db 2 ; 64-bit db 1 ; little-endian db 1 ; ELF header format version 1 db 0 ; System-V ABI db 8 dup 0 ; (padding) dw 2 ; *executable dw 0x3E ; *Intel x86-64 dd 1 ; ELF format version dq _start ; *entry point dq program_header - $$ ; *program header offset dq 0 ; section header offset dd 0 ; processor flags dw elf_header_size dw program_header_entry_size ; * dw 1 ; *number of program header entries dw 0 ; section header entry size dw 0 ; number of section header entries dw 0 ; section name string table index ; Save a copy of the size of this chunk for our future reference, by comparing ; the current posiion to the label above. elf_header_size = $ - elf_header ;;; ;;; Third, immediately after the ELF file header, we output ELF's program ;;; header, which lists the memory regions ("segments") we want to have and ;;; where we want them to come from. We list just a single region, which is ;;; the entire contents of the ELF file from disk. ;;; ;;; It would be more typical to have separate code and data segments, and ;;; perhaps a stack or heap, but this keeps things simple. We do have a little ;;; stack space available, though we don't explicitily request any; the kernel ;;; allocates it for us as part of exec() so that it can pass us argc and argv ;;; (which we ignore). That stack space will be at a random address, different ;;; every time, because of ASLR; that's a neat security feature, so we leave ;;; it as-is. ;;; program_header: dd 1 ; *"loadable" segment type dd 0x05 ; *read+execute permission dq 0 ; *offset in file dq $$ ; *virtual address ; required, but can be anything, subject to ; alignment dq 0 ; physical address (ignored) dq file_size ; *size in file dq file_size ; *size in memory dq 0 ; segment alignment ; for relocation - will we be ASLR'd? ; Save the size of this chunk, as well. program_header_entry_size = $ - program_header ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Implementation strategy ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; We assemble the entire file contents in a stack-allocated buffer. ;;; We avoid using the stack for any other purpose. When the file is fully ;;; assembled, we output it. ;;; ;;; The assembly proceeds in several chunks - ELF header, program header, ;;; etc. Each chunk extends the buffer as per its own needs, by adjusting ;;; the stack pointer. All chunks also update a running total file size, ;;; which refers to how many bytes have actually been populated, not to the ;;; size of the buffer. ;;; ;;; Register usage: ;;; ;;; * rdx holds the total used file size so far. During hand-off between ;;; chunks, this size must be equal to the buffer size; within a chunk it ;;; may be less. ;;; ;;; * rsp points to the bottom of the buffer. ;;; _start: ;;; ;;; Initialize registers ;;; mov.dreg.dimm rdx, 0 ; store running file size here sub.b rsp, 0xFF ; reserve stack space ;;; ;;; ELF header ;;; mov.rel.d rsp, 0x00, 0x7F bappend "ELF" ; magic number mov.rel.b rsp, 0x04, 2 ; 64-bit mov.rel.b rsp, 0x05, 1 ; little-endian mov.rel.b rsp, 0x06, 1 ; ELF header format version 1 mov.rel.b rsp, 0x07, 0 ; System-V ABI mov.rel.q.d rsp, 0x08, 0 ; (padding) mov.rel.w rsp, 0x10, 2 ; executable mov.rel.w rsp, 0x12, 0x3E ; Intel x86-64 mov.rel.d rsp, 0x14, 1 ; ELF format version ; Compute the entry pointer. mov.qreg.qimm rax, $$ add.b rax, 120 mov.rel.q rsp, 0x18, rax ; entry point mov.rel.q.d rsp, 0x20, 64 ; program header offset ; We place the program header immediately after the ELF header. This ; offset is from the start of the file. mov.rel.q.d rsp, 0x28, 0 ; section header offset mov.rel.d rsp, 0x30, 0 ; processor flags mov.rel.w rsp, 0x34, 64 ; ELF header size mov.rel.w rsp, 0x36, 56 ; program header entry size mov.rel.w rsp, 0x38, 1 ; number of program header entries mov.rel.w rsp, 0x3a, 0 ; section header entry size mov.rel.w rsp, 0x3c, 0 ; number of section header entries mov.rel.w rsp, 0x3e, 0 ; section name string table index ; Add the size of the ELF header to the running total mov.dreg.dimm rax, 0x40 add.q rdx, rax ;;; ;;; Program header ;;; mov.rel.d rsp, 0x40, 1 ; "loadable" segment type mov.rel.d rsp, 0x44, 0x05 ; read+execute permission mov.rel.q.d rsp, 0x48, 0 ; offset in file mov.rel.q.d rsp, 0x50, $$ ; virtual address ; required, but can be anything, subject to alignment mov.rel.q.d rsp, 0x58, 0 ; physical address (ignored) ; Fill in 0 as the file size for now, to avoid unitialized memory. mov.rel.q.d rsp, 0x60, 0 ; size in file mov.rel.q.d rsp, 0x68, 0 ; size in memory mov.rel.q.d rsp, 0x70, 0 ; segment alignment ; for relocation - will we be ASLR'd? ; Add the size of the program header to the running total mov.dreg.dimm rax, 0x38 add.q rdx, rax ; Add the guessed, wrong size of the program ;;; Hardcode the size of the actual code chunk, since we don't yet have a ;;; way to generate it. ;;; ;;; TODO of course, really we want to for-real track this mov.qreg.qimm rax, 0x15a add.q rdx, rax ;;; ;;; Go back and fill in the file size now that we know it. ;;; mov.rel.q rsp, 0x60, rdx ; size in file mov.rel.q rsp, 0x68, rdx ; size in memory ;;; ;;; The buffer is ready; output the file. ;;; ; write() from stack-allocated buffer mov.b rax,1 mov.qreg.qimm rdi, 1 mov.qreg.qreg rsi, rsp mov.qreg.qimm rdx, 0x78 syscall ; write() the machine code by using self-reference ; ; TODO do this in a "real" quine way mov.b rax, 1 mov.qreg.qimm rdi, 1 mov.qreg.qimm rsi, elf_header + 0x78 mov.qreg.qimm rdx, file_size - 0x78 syscall ;;; ;;; Clean up. ;;; ; exit() mov.b rax, 60 mov.b rdi, 0 syscall file_size = $ - $$